Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Med Toxicol ; 19(1): 26-36, 2023 01.
Article in English | MEDLINE | ID: covidwho-2228729

ABSTRACT

SARS-CoV-2 emerged in 2019 and led to the COVID-19 pandemic. Efforts to develop therapeutics against SARS-Cov-2 led to both new treatments and attempts to repurpose existing medications. Here, we provide a narrative review of the xenobiotics and alternative remedies used or proposed to treat COVID-19. Most repositioned xenobiotics have had neither the feared toxicity nor the anticipated efficacy. Repurposed viral replication inhibitors are not efficacious and frequently associated with nausea, vomiting, and diarrhea. Antiviral medications designed specifically against SARS-CoV-2 may prevent progression to severe disease in at-risk individuals and appear to have a wide therapeutic index. Colloidal silver, zinc, and ivermectin have no demonstrated efficacy. Ivermectin has a wide therapeutic index but is not efficacious and acquiring it from veterinary sources poses additional danger. Chloroquine has a narrow therapeutic index and no efficacy. A companion review covers vaccines, monoclonal antibodies, and immunotherapies. Together, these two reviews form an update to our 2020 review.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Xenobiotics , Pandemics/prevention & control , Ivermectin/therapeutic use , Antiviral Agents/therapeutic use
2.
Drug Metab Lett ; 2022 Mar 31.
Article in English | MEDLINE | ID: covidwho-1775548

ABSTRACT

Coronaviruses cause disease in human and animals. In 2019 a novel coronavirus was first characterized in Wuhan, China. It causes acute respiratory disease and designated the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or COVID-19. The COVID-19 spread to all cities of China, and in 2020 to the whole world. Patients with COVID-19 may recover without medical treatment. However, some patients need medical care. The Cytochrome p450s (CYP450s) are large superfamily of enzymes catalyze the metabolism of endogenous substrates and xenobiotics. CYP450s catalyze the biotransformation of 80% of the drug in clinical use. The CYP450 present in liver, lungs, intestine and other tissues. COVID-19 has been reported to decrease the activity of certain isoforms of CYP450s in an isoform specific manner. Furthermore, the COVID-19 infection decreases the liver functions including the drug clearance or detoxification medicated by the CYP450s. The healthcare providers should be aware of this disease-drug interaction when prescribing drugs for treatment of COVID-19 and other comorbidities.

3.
Int J Mol Sci ; 22(22)2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1524027

ABSTRACT

Severe outcomes of COVID-19 are associated with pathological response of the immune system to the SARS-CoV-2 infection. Emerging evidence suggests that an interaction may exist between COVID-19 pathogenesis and a broad range of xenobiotics, resulting in significant increases in death rates in highly exposed populations. Therefore, a better understanding of the molecular basis of the interaction between SARS-CoV-2 infection and chemical exposures may open opportunities for better preventive and therapeutic interventions. We attempted to gain mechanistic knowledge on the interaction between SARS-CoV-2 infection and chemical exposures using an in silico approach, where we identified genes and molecular pathways affected by both chemical exposures and SARS-CoV-2 in human immune cells (T-cells, B-cells, NK-cells, dendritic, and monocyte cells). Our findings demonstrate for the first time that overlapping molecular mechanisms affected by a broad range of chemical exposures and COVID-19 are linked to IFN type I/II signaling pathways and the process of antigen presentation. Based on our data, we also predict that exposures to various chemical compounds will predominantly impact the population of monocytes during the response against COVID-19.


Subject(s)
COVID-19/immunology , Immunity, Innate/drug effects , Xenobiotics/pharmacology , B-Lymphocytes/cytology , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , COVID-19/pathology , COVID-19/virology , Humans , Interferons/metabolism , SARS-CoV-2/isolation & purification , Signal Transduction/drug effects , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism
4.
Int J Mol Sci ; 22(9)2021 Apr 22.
Article in English | MEDLINE | ID: covidwho-1389396

ABSTRACT

Chloroxylenol (PCMX) is applied as a preservative and disinfectant in personal care products, currently recommended for use to inactivate the SARS-CoV-2 virus. Its intensive application leads to the release of PCMX into the environment, which can have a harmful impact on aquatic and soil biotas. The aim of this study was to assess the mechanism of chloroxylenol biodegradation by the fungal strains Cunninghamella elegans IM 1785/21GP and Trametes versicolor IM 373, and investigate the ecotoxicity of emerging by-products. The residues of PCMX and formed metabolites were analysed using GC-MS. The elimination of PCMX in the cultures of tested microorganisms was above 70%. Five fungal by-products were detected for the first time. Identified intermediates were performed by dechlorination, hydroxylation, and oxidation reactions catalysed by cytochrome P450 enzymes and laccase. A real-time quantitative PCR analysis confirmed an increase in CYP450 genes expression in C. elegans cells. In the case of T. versicolor, spectrophotometric measurement of the oxidation of 2,20-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) showed a significant rise in laccase activity during PCMX elimination. Furthermore, with the use of bioindicators from different ecosystems (Daphtoxkit F and Phytotoxkit), it was revealed that the biodegradation process of PCMX had a detoxifying nature.


Subject(s)
Cunninghamella/metabolism , Trametes/metabolism , Xylenes/metabolism , Animals , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Daphnia/drug effects , Daphnia/physiology , Fungal Proteins/genetics , Fungal Proteins/metabolism , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation , Laccase/metabolism , Oxidation-Reduction , Toxicity Tests , Xylenes/analysis , Xylenes/pharmacology
5.
EPMA J ; 12(2): 141-153, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1300537

ABSTRACT

BACKGROUND/AIMS: Exposure to bioactive compounds from nutrition, pharmaceuticals, environmental contaminants or other lifestyle habits may affect the human organism. To gain insight into the effects of these influences, as well as the fundamental biochemical mechanisms behind them, individual molecular profiling seems to be a promising tool and may support the further development of predictive, preventive and personalised medicine. METHODS: We developed an assay, called metabo-tip for the analysis of sweat, collected from fingertips, using mass spectrometry-by far the most comprehensive and sensitive method for such analyses. To evaluate this assay, we exposed volunteers to various xenobiotics using standardised protocols and investigated their metabolic response. RESULTS: As early as 15 min after the consumption of a cup of coffee, 50 g of dark chocolate or a serving of citrus fruits, significant changes in the sweat composition of the fingertips were observed, providing relevant information in regard to the ingested substances. This included not only health-promoting bioactive compounds but also potential hazardous substances. Furthermore, the identification of metabolites from orally ingested medications such as metamizole indicated the applicability of this assay to observe specific enzymatic processes in a personalised fashion. Remarkably, we found that the sweat composition fluctuated in a diurnal rhythm, supporting the hypothesis that the composition of sweat can be influenced by endogenous metabolic activities. This was further corroborated by the finding that histamine was significantly increased in the metabo-tip assay in individuals with allergic reactions. CONCLUSION: Metabo-tip analysis may have a large number of practical applications due to its analytical power, non-invasive character and the potential of frequent sampling, especially regarding the individualised monitoring of specific lifestyle and influencing factors. The extraordinarily rich individualised metabolomics data provided by metabo-tip offer direct access to individual metabolic activities and will thus support predictive preventive personalised medicine. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13167-021-00241-6.

6.
Food Chem Toxicol ; 141: 111418, 2020 Jul.
Article in English | MEDLINE | ID: covidwho-345861

ABSTRACT

Occupational, residential, dietary and environmental exposures to mixtures of synthetic anthropogenic chemicals after World War II have a strong relationship with the increase of chronic diseases, health cost and environmental pollution. The link between environment and immunity is particularly intriguing as it is known that chemicals and drugs can cause immunotoxicity (e.g., allergies and autoimmune diseases). In this review, we emphasize the relationship between long-term exposure to xenobiotic mixtures and immune deficiency inherent to chronic diseases and epidemics/pandemics. We also address the immunotoxicologic risk of vulnerable groups, taking into account biochemical and biophysical properties of SARS-CoV-2 and its immunopathological implications. We particularly underline the common mechanisms by which xenobiotics and SARS-CoV-2 act at the cellular and molecular level. We discuss how long-term exposure to thousand chemicals in mixtures, mostly fossil fuel derivatives, exposure toparticle matters, metals, ultraviolet (UV)-B radiation, ionizing radiation and lifestyle contribute to immunodeficiency observed in the contemporary pandemic, such as COVID-19, and thus threaten global public health, human prosperity and achievements, and global economy. Finally, we propose metrics which are needed to address the diverse health effects of anthropogenic COVID-19 crisis at present and those required to prevent similar future pandemics.


Subject(s)
Air Pollutants/toxicity , Betacoronavirus , Coronavirus Infections/epidemiology , Pesticides/toxicity , Pneumonia, Viral/epidemiology , Xenobiotics/toxicity , Animals , Antiviral Agents/therapeutic use , COVID-19 , Coronavirus Infections/drug therapy , Coronavirus Infections/physiopathology , Diet , Epidemics , Humans , Immune System/drug effects , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/physiopathology , Prevalence , Receptors, Aryl Hydrocarbon/metabolism , Risk Factors , SARS-CoV-2 , Signal Transduction/drug effects , Time
SELECTION OF CITATIONS
SEARCH DETAIL